Package: SpatGC 0.1.0

SpatGC: Bayesian Modeling of Spatial Count Data

Provides a collection of functions for preparing data and fitting Bayesian count spatial regression models, with a specific focus on the Gamma-Count (GC) model. The GC model is well-suited for modeling dispersed count data, including under-dispersed or over-dispersed counts, or counts with equivalent dispersion, using Integrated Nested Laplace Approximations (INLA). The package includes functions for generating data from the GC model, as well as spatially correlated versions of the model. See Nadifar, Baghishani, Fallah (2023) <doi:10.1007/s13253-023-00550-5>.

Authors:Mahsa Nadifar [aut, cre], Hossein Baghishani [aut]

SpatGC_0.1.0.tar.gz
SpatGC_0.1.0.zip(r-4.5)SpatGC_0.1.0.zip(r-4.4)SpatGC_0.1.0.zip(r-4.3)
SpatGC_0.1.0.tgz(r-4.4-any)SpatGC_0.1.0.tgz(r-4.3-any)
SpatGC_0.1.0.tar.gz(r-4.5-noble)SpatGC_0.1.0.tar.gz(r-4.4-noble)
SpatGC_0.1.0.tgz(r-4.4-emscripten)SpatGC_0.1.0.tgz(r-4.3-emscripten)
SpatGC.pdf |SpatGC.html
SpatGC/json (API)
NEWS

# Install 'SpatGC' in R:
install.packages('SpatGC', repos = c('https://mahsanst.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mahsanst/spatgc/issues

On CRAN:

3.00 score 143 downloads 14 exports 20 dependencies

Last updated 7 months agofrom:6e80132935. Checks:OK: 6 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-winOKNov 23 2024
R-4.5-linuxOKNov 23 2024
R-4.4-winOKNov 23 2024
R-4.4-macOKNov 23 2024
R-4.3-winNOTENov 23 2024
R-4.3-macOKNov 23 2024

Exports:dGCGGClatNBlatpGCPoislatqGCrAdjrGCrGCgeorGClatspatCARspatGEOspatICAR

Dependencies:bootclassclassIntDBIdeldire1071KernSmoothlatticemagrittrMASSmvtnormproxyRcpps2sfspspDataspdepunitswk