Package: SpatGC 0.1.0

SpatGC: Bayesian Modeling of Spatial Count Data

Provides a collection of functions for preparing data and fitting Bayesian count spatial regression models, with a specific focus on the Gamma-Count (GC) model. The GC model is well-suited for modeling dispersed count data, including under-dispersed or over-dispersed counts, or counts with equivalent dispersion, using Integrated Nested Laplace Approximations (INLA). The package includes functions for generating data from the GC model, as well as spatially correlated versions of the model. See Nadifar, Baghishani, Fallah (2023) <doi:10.1007/s13253-023-00550-5>.

Authors:Mahsa Nadifar [aut, cre], Hossein Baghishani [aut]

SpatGC_0.1.0.tar.gz
SpatGC_0.1.0.zip(r-4.5)SpatGC_0.1.0.zip(r-4.4)SpatGC_0.1.0.zip(r-4.3)
SpatGC_0.1.0.tgz(r-4.4-any)SpatGC_0.1.0.tgz(r-4.3-any)
SpatGC_0.1.0.tar.gz(r-4.5-noble)SpatGC_0.1.0.tar.gz(r-4.4-noble)
SpatGC_0.1.0.tgz(r-4.4-emscripten)SpatGC_0.1.0.tgz(r-4.3-emscripten)
SpatGC.pdf |SpatGC.html
SpatGC/json (API)
NEWS

# Install 'SpatGC' in R:
install.packages('SpatGC', repos = c('https://mahsanst.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/mahsanst/spatgc/issues

On CRAN:

3.00 score 189 downloads 14 exports 20 dependencies

Last updated 10 months agofrom:6e80132935. Checks:6 OK, 1 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 22 2025
R-4.5-winOKJan 22 2025
R-4.5-linuxOKJan 22 2025
R-4.4-winOKJan 22 2025
R-4.4-macOKJan 22 2025
R-4.3-winNOTEJan 22 2025
R-4.3-macOKJan 22 2025

Exports:dGCGGClatNBlatpGCPoislatqGCrAdjrGCrGCgeorGClatspatCARspatGEOspatICAR

Dependencies:bootclassclassIntDBIdeldire1071KernSmoothlatticemagrittrMASSmvtnormproxyRcpps2sfspspDataspdepunitswk